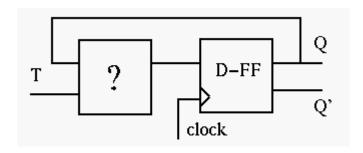

Flip flop Conversion

Flipflop Conversions

The purpose is to convert a given type A FF to a desired type B FF using some conversion logic.

Excitation Table

The key here is to use the excitation table, which shows the necessary triggering signal (SR, JK, D and T) for a desired flip flop state transition $Q_{t} - Q_{t+1}$:


Q_t	Q_{t+1}	S	R	J	Κ	D	T
0	0	0	x	0	х	0	0
0	1	1	0	1	x	1	0 1 1
1	0	0	1	x	1	0	1
1	1	x	0	х	0	1	0

Excitation Table of Flip flops based on characteristics table

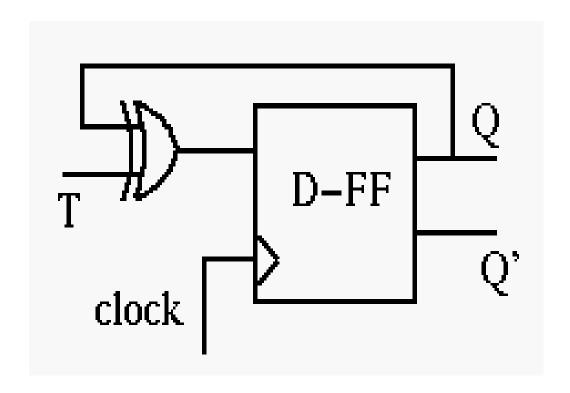
Convert a D-FF to a T-FF

The output of D flip flop should be as the output of T flip flop.

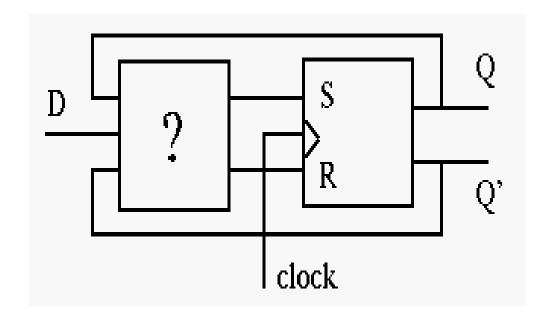
We need to design the circuit to generate the triggering signal D as a function of T and Q: D = f(T, Q)

Consider the excitation table of T and D Flip flops.

Write Down Excitation Table of T, Qn and Qn+1, D. For the K-map, consider T and Qr As Input and D as output.


$$D = TQn' + T'Qn$$
 (Ex- OR gate)

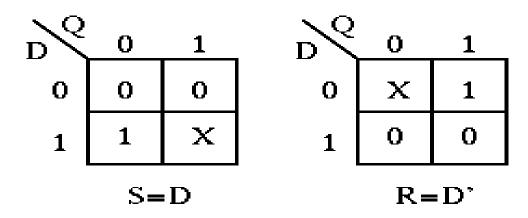
Т	$Q_{\mathbf{n}}$	Q_{n+1}	D	
0	0	Ô	0	
1	0	1	1	
1	1	0	0	
0	1	1	1	←


Convert a D-FF to a T-FF

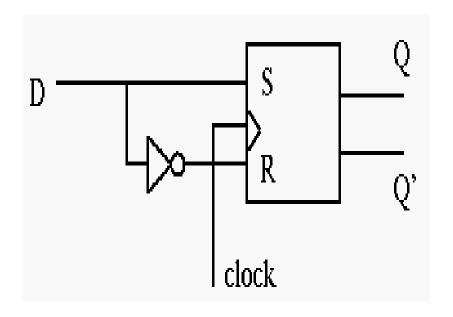
Treating as a function of and current FF state Q (Qt), we have:

$$D = T'Q + TQ' = T \oplus Q$$

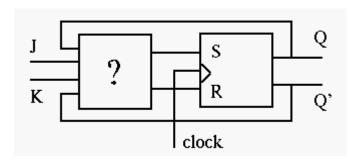
Convert a RS-FF to a D-FF



We need to design the circuit to generate the triggering signals S and R as functions of D and Q.

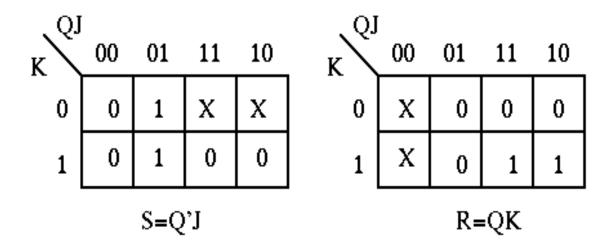

Consider the excitation table

D	Q_t	Q_{t+1}	5	R
0	0	0	0	х
1	0	1	1	0
0	1	0	0	1
1	1	1	×	0

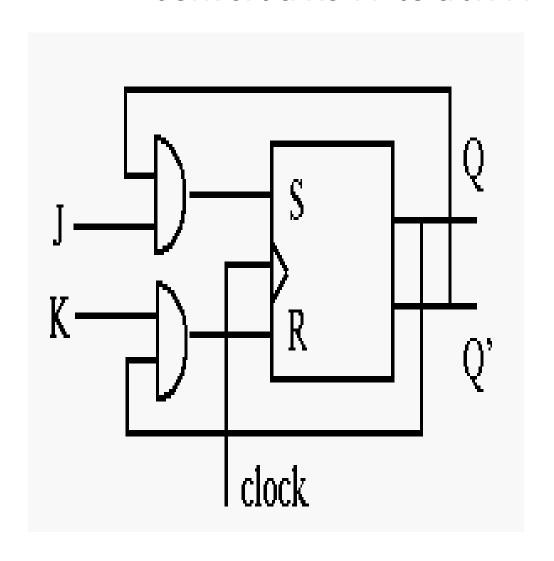

The desired signal S and R can be obtained as functions of D and Q current FF state from the Karnaugh maps:

Convert a D-FF to a T-FF

Convert a RS-FF to a JK-FF



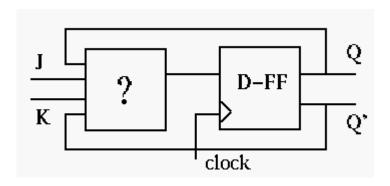
We need to design the circuit to generate the triggering signals S and R as functions of J, K and Q. Consider the excitation table:


J	Κ	Q_t	Q_{t+1}	S	R
0	x	0	0	0	х
1	x	0	1	1	0
x	1	1	0	0	1
x	0	1	1	х	0

Convert a RS-FF to a JK-FF

The desired signal S and R as functions of J, K and current FF state Q can be obtained from the Karnaugh maps:

Convert a RS-FF to a JK-FF



Assignment 23: Total Conversions

```
SR ---- JK
D ----- T
        SR
       JK
T ----D
       SR
       JK
JK----- D
        SR
          Total Conversions – 12 (Practice for all)
```

Assignment - 23

How about this conversion?

